Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Commun Biol ; 6(1): 528, 2023 05 16.
Article in English | MEDLINE | ID: covidwho-2322455

ABSTRACT

The discovery and characterization of antigen-specific CD8+ T cell clonotypes typically involves the labor-intensive synthesis and construction of peptide-MHC tetramers. We adapt single-chain trimer (SCT) technologies into a high throughput platform for pMHC library generation, showing that hundreds can be rapidly prepared across multiple Class I HLA alleles. We use this platform to explore the impact of peptide and SCT template mutations on protein expression yield, thermal stability, and functionality. SCT libraries were an efficient tool for identifying T cells recognizing commonly reported viral epitopes. We then construct SCT libraries to capture SARS-CoV-2 specific CD8+ T cells from COVID-19 participants and healthy donors. The immunogenicity of these epitopes is validated by functional assays of T cells with cloned TCRs captured using SCT libraries. These technologies should enable the rapid analyses of peptide-based T cell responses across several contexts, including autoimmunity, cancer, or infectious disease.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Humans , SARS-CoV-2/genetics , Antigens , Epitopes , Peptides/genetics
2.
Health Data Sci ; 20222022.
Article in English | MEDLINE | ID: covidwho-2257820

ABSTRACT

Background: Angiotensin-converting enzyme inhibitors (ACEi) and angiotensin-II receptor blockers (ARB), the most commonly prescribed antihypertensive medications, counter renin-angiotensin-aldosterone system (RAAS) activation via induction of angiotensin-converting enzyme 2 (ACE2) expression. Considering that ACE2 is the functional receptor for SARS-CoV-2 entry into host cells, the association of ACEi and ARB with COVID-19 outcomes needs thorough evaluation. Methods: We conducted retrospective analyses using both unmatched and propensity score (PS)-matched cohorts on electronic health records (EHRs) to assess the impact of RAAS inhibitors on the risk of receiving invasive mechanical ventilation (IMV) and 30-day mortality among hospitalized COVID-19 patients. Additionally, we investigated the immune cell gene expression profiles of hospitalized COVID-19 patients with prior use of antihypertensive treatments from an observational prospective cohort. Results: The retrospective analysis revealed that there was no increased risk associated with either ACEi or ARB use. In fact, the use of ACEi showed decreased risk for mortality. Survival analyses using PS-matched cohorts suggested no significant relationship between RAAS inhibitors with a hospital stay and in-hospital mortality compared to non-RAAS medications and patients not on antihypertensive medications. From the analysis of gene expression profiles, we observed a noticeable up-regulation in the expression of 1L1R2 (an anti-inflammatory receptor) and RETN (an immunosuppressive marker) genes in monocytes among prior users of ACE inhibitors. Conclusion: Overall, the findings do not support the discontinuation of ACEi or ARB treatment and suggest that ACEi may moderate the COVID-19 hyperinflammatory response.

3.
Vaccines (Basel) ; 11(1)2022 Dec 20.
Article in English | MEDLINE | ID: covidwho-2241045

ABSTRACT

Recovery from COVID-19 is associated with production of anti-SARS-CoV-2 antibodies, but it is uncertain whether these confer immunity. We describe viral RNA shedding duration in hospitalized patients and identify patients with recurrent shedding. We sequenced viruses from two distinct episodes of symptomatic COVID-19 separated by 144 days in a single patient, to conclusively describe reinfection with a different strain harboring the spike variant D614G. This case of reinfection was one of the first cases of reinfection reported in 2020. With antibody, B cell and T cell analytics, we show correlates of adaptive immunity at reinfection, including a differential response in neutralizing antibodies to a D614G pseudovirus. Finally, we discuss implications for vaccine programs and begin to define benchmarks for protection against reinfection from SARS-CoV-2.

4.
J Sep Sci ; 2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2236001

ABSTRACT

Makyo-kanseki-to has been used for the treatment of pneumonia, becoming a basic formula for coronavirus disease 2019. However, the chemical profile of Makyo-kanseki-to granule and its possible mechanism against acute lung injury from terminal metabolic regulation have been unclear. The aim of this study was to characterize the constituents in Makyo-kanseki-to granule and reveal the potential related mechanism of Makyo-kanseki-to granule treatment for acute lung injury using a rat model of lipopolysaccharide-induced acute lung injury. Totally, 78 constituents were characterized based on ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Makyo-kanseki-to granule could alleviate acute lung injury through modulating rectal temperature, pulmonary edema, histopathology, and processes of inflammatory and oxidative stress. Twenty-two potential biomarkers in acute lung injury rats were identified by metabolomics based on ultra-performance liquid chromatography coupled with quadrupole exactive high-field mass spectrometry. They were mainly involved in amino acids and glycerophospholipid metabolism, which were regulated by Makyo-kanseki-to granule. The present results not only increase the understanding of the chemical profile and molecular mechanism of Makyo-kanseki-to granule mediated protection against acute lung injury but also provide an experimental basis and new ideas for further development and clinical application of Makyo-kanseki-to granule.

5.
Nat Med ; 29(1): 236-246, 2023 01.
Article in English | MEDLINE | ID: covidwho-2160251

ABSTRACT

Post-acute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are debilitating, clinically heterogeneous and of unknown molecular etiology. A transcriptome-wide investigation was performed in 165 acutely infected hospitalized individuals who were followed clinically into the post-acute period. Distinct gene expression signatures of post-acute sequelae were already present in whole blood during acute infection, with innate and adaptive immune cells implicated in different symptoms. Two clusters of sequelae exhibited divergent plasma-cell-associated gene expression patterns. In one cluster, sequelae associated with higher expression of immunoglobulin-related genes in an anti-spike antibody titer-dependent manner. In the other, sequelae associated independently of these titers with lower expression of immunoglobulin-related genes, indicating lower non-specific antibody production in individuals with these sequelae. This relationship between lower total immunoglobulins and sequelae was validated in an external cohort. Altogether, multiple etiologies of post-acute sequelae were already detectable during SARS-CoV-2 infection, directly linking these sequelae with the acute host response to the virus and providing early insights into their development.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2 , Antibodies, Viral
6.
Cell ; 185(5): 881-895.e20, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1649960

ABSTRACT

Post-acute sequelae of COVID-19 (PASC) represent an emerging global crisis. However, quantifiable risk factors for PASC and their biological associations are poorly resolved. We executed a deep multi-omic, longitudinal investigation of 309 COVID-19 patients from initial diagnosis to convalescence (2-3 months later), integrated with clinical data and patient-reported symptoms. We resolved four PASC-anticipating risk factors at the time of initial COVID-19 diagnosis: type 2 diabetes, SARS-CoV-2 RNAemia, Epstein-Barr virus viremia, and specific auto-antibodies. In patients with gastrointestinal PASC, SARS-CoV-2-specific and CMV-specific CD8+ T cells exhibited unique dynamics during recovery from COVID-19. Analysis of symptom-associated immunological signatures revealed coordinated immunity polarization into four endotypes, exhibiting divergent acute severity and PASC. We find that immunological associations between PASC factors diminish over time, leading to distinct convalescent immune states. Detectability of most PASC factors at COVID-19 diagnosis emphasizes the importance of early disease measurements for understanding emergent chronic conditions and suggests PASC treatment strategies.


Subject(s)
COVID-19/complications , COVID-19/diagnosis , Convalescence , Adaptive Immunity/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Autoantibodies/blood , Biomarkers/metabolism , Blood Proteins/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Disease Progression , Female , Humans , Immunity, Innate/genetics , Longitudinal Studies , Male , Middle Aged , Risk Factors , SARS-CoV-2/isolation & purification , Transcriptome , Young Adult , Post-Acute COVID-19 Syndrome
7.
Immunity ; 54(11): 2650-2669.e14, 2021 11 09.
Article in English | MEDLINE | ID: covidwho-1442406

ABSTRACT

Longitudinal analyses of the innate immune system, including the earliest time points, are essential to understand the immunopathogenesis and clinical course of coronavirus disease (COVID-19). Here, we performed a detailed characterization of natural killer (NK) cells in 205 patients (403 samples; days 2 to 41 after symptom onset) from four independent cohorts using single-cell transcriptomics and proteomics together with functional studies. We found elevated interferon (IFN)-α plasma levels in early severe COVD-19 alongside increased NK cell expression of IFN-stimulated genes (ISGs) and genes involved in IFN-α signaling, while upregulation of tumor necrosis factor (TNF)-induced genes was observed in moderate diseases. NK cells exert anti-SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) activity but are functionally impaired in severe COVID-19. Further, NK cell dysfunction may be relevant for the development of fibrotic lung disease in severe COVID-19, as NK cells exhibited impaired anti-fibrotic activity. Our study indicates preferential IFN-α and TNF responses in severe and moderate COVID-19, respectively, and associates a prolonged IFN-α-induced NK cell response with poorer disease outcome.


Subject(s)
COVID-19/immunology , Interferon-alpha/immunology , Killer Cells, Natural/immunology , SARS-CoV-2/immunology , Tumor Necrosis Factor-alpha/metabolism , Base Sequence , Humans , Immunity, Innate/immunology , Inflammation/immunology , Interferon-alpha/blood , Pulmonary Fibrosis/pathology , RNA-Seq , Severity of Illness Index , Transcriptome/genetics , United Kingdom , United States
8.
Nat Biotechnol ; 40(1): 110-120, 2022 01.
Article in English | MEDLINE | ID: covidwho-1397879

ABSTRACT

A better understanding of the metabolic alterations in immune cells during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may elucidate the wide diversity of clinical symptoms experienced by individuals with coronavirus disease 2019 (COVID-19). Here, we report the metabolic changes associated with the peripheral immune response of 198 individuals with COVID-19 through an integrated analysis of plasma metabolite and protein levels as well as single-cell multiomics analyses from serial blood draws collected during the first week after clinical diagnosis. We document the emergence of rare but metabolically dominant T cell subpopulations and find that increasing disease severity correlates with a bifurcation of monocytes into two metabolically distinct subsets. This integrated analysis reveals a robust interplay between plasma metabolites and cell-type-specific metabolic reprogramming networks that is associated with disease severity and could predict survival.


Subject(s)
COVID-19/blood , COVID-19/immunology , Monocytes/metabolism , Single-Cell Analysis , T-Lymphocytes/metabolism , COVID-19/diagnosis , COVID-19/metabolism , Humans , Prognosis
9.
Appl Microbiol Biotechnol ; 105(16-17): 6291-6299, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1368478

ABSTRACT

Improving the capacity of detecting positive severe acute respiratory syndrome coronavirus 2 is critical for identifying the infection of coronavirus disease 2019 (COVID-19) precisely and thereby curbing the pandemic. Cross-disciplinary approaches may improve the efficiency of COVID-19 diagnosis by compensating to some extent the limitations encountered by traditional test methods during the COVID-19 pandemic. Combining computed tomography (CT), serum-specific antibody detection, and nanopore sequencing with nucleic acid testing for individual testing may improve the accuracy of identifying COVID-19 patients. At community or even regional/national levels, the combination of pooled screening and spatial epidemiological strategies may enable the detection of early transmission of epidemics in a cost-effective way, which is also less affected by restricted access to diagnostic tests and kit supplies. This would significantly advance our capacity of curbing epidemics as soon as possible, and better prepare us for entering a new era of high-impact and high-frequency epidemics.


Subject(s)
COVID-19 , Nucleic Acids , COVID-19 Testing , Humans , Pandemics , SARS-CoV-2
10.
Cell ; 183(6): 1479-1495.e20, 2020 12 10.
Article in English | MEDLINE | ID: covidwho-917236

ABSTRACT

We present an integrated analysis of the clinical measurements, immune cells, and plasma multi-omics of 139 COVID-19 patients representing all levels of disease severity, from serial blood draws collected during the first week of infection following diagnosis. We identify a major shift between mild and moderate disease, at which point elevated inflammatory signaling is accompanied by the loss of specific classes of metabolites and metabolic processes. Within this stressed plasma environment at moderate disease, multiple unusual immune cell phenotypes emerge and amplify with increasing disease severity. We condensed over 120,000 immune features into a single axis to capture how different immune cell classes coordinate in response to SARS-CoV-2. This immune-response axis independently aligns with the major plasma composition changes, with clinical metrics of blood clotting, and with the sharp transition between mild and moderate disease. This study suggests that moderate disease may provide the most effective setting for therapeutic intervention.


Subject(s)
COVID-19 , Genomics , RNA-Seq , SARS-CoV-2 , Single-Cell Analysis , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/immunology , Female , Humans , Male , Middle Aged , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Severity of Illness Index
11.
Environ Int ; 143: 105964, 2020 10.
Article in English | MEDLINE | ID: covidwho-641724

ABSTRACT

To increase the capacity of identifying coronavirus disease 2019 (COVID-19) infection, many Biosafety Level 2 (BSL-2) labs have been established in a short period of time for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid tests all over the world. However, their biosafety has not been evaluated, which could have been the first gateway to SARS-CoV-2 transmission. During 9-11 March 2020, the first comprehensive evaluation of the biosafety in all 89 labs qualified for conducting SARS-CoV-2 tests in Sichuan Province of China was conducted. The degree of compliance with 39 criteria in five categories was evaluated: biosafety requirements for lab activities (14 criteria), sample transfer, acceptance and management (6 criteria), waste management (9 criteria), personnel training and protection (4 criteria), and lab environmental disinfection, emergency plans and accident handling (6 criteria). Our results revealed that, although an overall median compliance rate of 94.6% for 39 criteria, only four of 89 labs met all of them. Criteria in personnel training and protection have been most satisfactorily met, followed by lab environmental disinfection, emergency plans and accident handling. The most severe risk was the lack of automatic doors at the main entrance or in core operation areas, especially among labs in CDC and hospitals. This risk, together with failure for keeping pressure in the core operation areas 25 ± 5 Pa (mainly among labs in the third-party testing agencies), may cause accidental exposure to biological agents from lab activities. Other severe risk included failure for standard labeling of SARS-CoV-2 wastes and lacking regular monitoring of sterilization effects. Our findings would provide experiences and lessons for strengthening lab biosafety in other Chinese provinces, and also serve as an important reference for many other countries where such labs are being or will be quickly built for fighting the COVID-19. The information of lab safety should be considered to be internally linked to the national intelligent syndromic surveillance system (NISSS), for better improving the safety of the labs at the greatest need and facilitating more comprehensive surveillance of risk for disease outbreak.


Subject(s)
Betacoronavirus , COVID-19 , Coronavirus Infections , Pneumonia, Viral , China , Containment of Biohazards , Coronavirus Infections/epidemiology , Humans , Pandemics , Pneumonia, Viral/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL